Publications (directly supervised students indicated by *)

  1. Bialy et al., “The Molecular Cloud Lifecycle I: Constraining H2 formation and dissociation rates with observations”, 2025, ApJ, 982, 24
  2. Kreckel et al., “SDSS-V Local Volume Mapper (LVM): A glimpse into Orion”, 2024, A&A, 689, 352
  3. Kong et al., “Filamentary Molecular Cloud Formation via Collision-induced Magnetic Reconnection in Cold Neutral Medium”, 2024, ApJ, 975, 97
  4. Bieging, John and Kong, Shuo, “CO in the Draco nebula: the atomic-molecular transition”, 2024, MNRAS, 531, 4138
  5. Burkhart et al., “The Molecular Cloud Lifecycle II: Formation and Destruction of Molecular Clouds Diagnosed via H2 Fluorescent Emission”, 2024, ApJ, 975, 269
  6. *Baade et al., “CO mapping of Cygnus-X -- volume density distribution”, 2023, ApJ, 960, 33
  7. Xu, Duo; Kong, Shuo; *Kaul, Avichal et al., “CMR Exploration. II. Filament Identification with Machine Learning”, 2023, ApJ, 955, 113
  8. Kong et al., “Binary Formation in a 100μm-dark Massive Core”, 2023, ApJ, 950, 187
  9. Kong et al., “CMR Exploration. I. Filament Structure with Synthetic Observations”, 2023, ApJS, 265, 58
  10. Hsieh et al., “The Evolution of Protostellar Outflow Cavities, Kinematics, and Angular Distribution of Momentum and Energy in Orion A: Evidence for Dynamical Cores”, 2023, ApJ, 947, 25
  11. Takemura et al., “CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A”, 2023, ApJS, 264, 35
  12. Kong et al., “Filament formation via collision-induced magnetic reconnection - formation of a star cluster”, 2022, MNRAS, 517, 4679
  13. Hamden et al., “Hyperion: the origin of the stars. A far UV space telescope for high-resolution spectroscopy over wide fields”, 2022, JATIS, 8, 4008
  14. Bieging, John and Kong, Shuo, “The Star Formation-Gas Density Relation in Four Galactic GMCs Derived from Sub-parsec Maps of CO and 13CO J=2-1”, 2022, ApJ, 938, 145
  15. Kong, Shuo, “Dense Gas Formation via Collision-induced Magnetic Reconnection in a Disk Galaxy with a BiSymmetric Spiral Magnetic Field”, 2022, ApJ, 933, 40
  16. Xu et al.,“A Census of Protostellar Outflows in Nearby Molecular Clouds”,2021,ApJ,926,19
  17. Barnes et al., “ALMA-IRDC: dense gas mass distribution from cloud to core scales”, 2021, MNRAS, 503, 4601
  18. Kong et al., “High-resolution CARMA Observation of Molecular Gas in the North America and Pelican Nebulae”, 2021, AJ, 161, 229
  19. Kong et al., “Evidence of Core Growth in the Dragon Infrared Dark Cloud: A Path for Massive Star Formation”, 2021, ApJ, 912, 156
  20. Kong et al., “The CARMA-NRO Orion Survey — Data Release”, 2021, RNAAS, 5, 55
  21. Takemura et al., “The Core Mass Function in the Orion Nebula Cluster Region: What Determines the Final Stellar Masses?”, 2021, ApJ, 910, 6
  22. Hsieh et al., “Rotating filament in Orion B: Do cores inherit their angular momentum from their parent filament?”, 2021, ApJ, 908, 92
  23. Lim et al., “Star cluster formation in Orion A”, 2021, PASJ, 73, 239
  24. Kong et al., “The CARMA-NRO Orion Survey: Filament Formation via Collision-Induced Magnetic Reconnection -- The Stick in Orion A”, 2021, ApJ, 906, 80
  25. Liu et al., “SiO Outflows as Tracers of Massive Star Formation in Infrared Dark Clouds”, 2021, ApJ, 921, 96
  26. Feddersen et al., “The CARMA-NRO Orion Survey: Protostellar Outflows, Energetics, and Filamentary Alignment”, 2020, ApJ, 896, 11
  27. Beaklini et al., “Sulphur-Bearing and Complex Organic Molecules in an Infrared Cold Core”, 2020, MNRAS, 491, 427
  28. Tanabe et al., “Nobeyama 45-m Mapping Observations toward Orion A.I. Molecular Outflows”, 2019, PASJ, 71, 8
  29. Brummel-Smith et al., “ENZO: An Adaptive Mesh Refinement Code for Astrophysics (Version 2.6)”, 2019, JOSS, 4, 1636
  30. Kong et al., “The CARMA-NRO Orion Survey: Core Emergence and Kinematics in the Orion A Cloud”, 2019, ApJ, 882, 45
  31. Feddersen et al., “CARMA-NRO Orion: Statistical Signatures of Feedback in the Orion A Molecular Cloud”, 2019, ApJ, 875, 162
  32. Kong et al., “Widespread Molecular Outflows in the Infrared Dark Cloud G28.37+0.07: Indications of Outflow Alignment and Large Outflow-Filament Angle”, 2019, ApJ, 874, 104
  33. Kong, Shuo, “Core Mass Function in Infrared Dark Cloud G28.37+0.07”,2019,ApJ,873,31
  34. Suri et al., “The CARMA-NRO Orion Survey: The filamentary structure as seen in C18O emission”, 2018, A&A, 623, 142
  35. Feddersen et al., “Expanding CO Shells in the Orion A Molecular Cloud”,2018,ApJ,862,121
  36. Liu et al. “The Core Mass Function across Galactic Environments. II. Infrared Dark Cloud Clumps”, 2018, ApJ, 862, 105
  37. Kong, Shuo and the CARMA-NRO Orion team, “The CARMA-NRO Orion Survey”, 2018, ApJS, 236, 25
  38. Kong et al., “Core Emergence in a Massive Infrared Dark Cloud: A Comparison between Mid-IR Extinction and 1.3 mm Emission”, 2018, ApJ, 855, 25
  39. Cheng et al., “The Core Mass Function in the Massive Protocluster G286.21+0.17 revealed by ALMA”, 2018, ApJ, 853, 160
  40. Kong et al., “Zooming in to Massive Star Birth”, 2018, ApJ, 867, 94
  41. Imara et al., “X Marks the Spot: Nexus of Filaments, Cores, and Outflows in a Young Star-Forming Region”, 2017, ApJ, 840, 119
  42. Kong et al., “A hunt for massive starless cores”, 2017, ApJ, 834, 193
  43. Goodson et al., “Structure, Dynamics and Deuterium Fractionation of Massive Pre-Stellar Cores”, 2016, ApJ, 833, 274
  44. Barnes et al., “Widespread deuteration across the IRDC G035.39-00.33”, 2016, MNRAS, 458, 1990
  45. Kong et al., “The Deuterium Fraction in Massive Starless Cores and Dynamical Implications”, 2016, ApJ, 821, 94
  46. Tan et al., “An Ordered Bipolar Outflow from A Massive Early-stage Core”,2016,ApJL,821,3
  47. Kong et al., “The Relationship Between the Dust and Gas-Phase CO Across the California Molecular Cloud”, 2015, ApJ, 805, 58
  48. Kong et al., “The Deuterium Fractionation Timescale in Dense Cloud: A Parameter Space Exploration”, 2015, ApJ, 804, 98
  49. Tan et al., “The Dynamics of Massive Starless Cores with ALMA”, 2013, ApJ, 779, 96
  50. Kong & Wu , “Inclination-angle of the outflow in IRAS 05553+1631: A method to correct the projection effect”, 2011, MNRAS, 413, 71